ALGEBRA PHD PRELIMINARY EXAM, 17 MAY 2018

Instructions: Put all work you wish to have graded on the blank sheets of paper provided. Use a fresh sheet of paper for each new problem, and clearly indicate on each page which problem you are answering. No books or calculators are allowed. There are 8 questions worth 10 points each, for a total of 80 points.

1. Let \(V \) be a vector space over the real numbers. Let \(U \) and \(W \) be subspaces of \(V \). Prove that \(U \cup W \) is a subspace of \(V \) if and only if either \(U \subseteq W \) or \(W \subseteq U \).

2. Let \(G \) and \(H \) be groups and consider the product group \(G \times H \). Let \(e_G \) be the identity element of \(G \). Consider the set \(X \subseteq G \times H \) defined by \(X = \{ (e_G, h) | h \in H \} \). Construct a bijective correspondence between \{subgroups of \(G \)\} and \{subgroups of \(G \times H \) that contain \(X \)\}. Be sure to prove that your bijection works.

3. Prove that there is no simple group of order 56.

4. Let \(A \) and \(B \) be \(n \times n \) matrices over the complex numbers.
 (a) Prove that if \(A \) is similar to \(B \), then \(A \) and \(B \) have the same characteristic polynomial.
 (b) Prove that if \(A \) and \(B \) are both diagonalizable and \(A \) and \(B \) have the same characteristic polynomial, then \(A \) is similar to \(B \).
 (c) Show by example that if at least one of \(A \) or \(B \) is not diagonalizable, then it can be the case that \(A \) and \(B \) have the same characteristic polynomial but \(A \) is not similar to \(B \). Be sure to prove your example is valid.

5. Let \(G \) be the Abelian group generated by four elements \(w, x, y, z \), subject to the relations

\[
\begin{align*}
y + 3z &= 0 \\
-2w + x + y + 3z &= 0 \\
-2w + 4x + y + 3z &= 0 \\
-3x + y + 5z &= 0.
\end{align*}
\]

Write \(G \) as a direct sum of cyclic groups in two ways, corresponding to the two versions of the Fundamental Theorem of Finitely Generated Abelian Groups.

6. Let \(R \) be a commutative ring and \(M \) an \(R \)-module. Recall that \(M \) is said to be finitely generated if there are elements \(x_1, \ldots, x_n \in M \) such that \(M = Rx_1 + \cdots + Rx_n \).
(a) If $N \subseteq M$ is a submodule such that both N and M/N are finitely generated, prove that M is finitely generated.
(b) Give an example, with justification, of a finitely generated module M and a submodule N which is not finitely generated.

7. Suppose that A is a square complex matrix with characteristic polynomial $c_A(x) = (x-1)^4(x+3)^5$. Assume also that $A - I$ has nullity 4 and $A + 3I$ has nullity 1, where I is the identity matrix of the same size as A. Find, with justification, all possible Jordan canonical forms of A, and give the minimal polynomial for each.

8. Set $K = \mathbb{Q}(i, \sqrt[4]{2})$, where i is the complex root of -1 and $\sqrt[4]{2}$ is the real fourth root of 2.
 (a) Find the degree $[K : \mathbb{Q}]$.
 (b) Identify all the elements of $\text{Aut}_\mathbb{Q}(K)$.
 (c) Identify the isomorphism type of the group $\text{Aut}_\mathbb{Q}(K)$.
 Justify all your conclusions.