MAT 112 Final Exam Fall 2014
Instructor: Joshua Jones

Instructions:

Do not open this booklet until you are told to do so. SHOW ALL WORK required in solving the problems. No work means zero credit. You may use a calculator on any part of the exam, but you may not share a calculator with another student. If you have any questions, ask one of the proctors.

Printed name: ____________________________

Signature: _______________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points Possible</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Consider the table to the right:

 a. What type of function is \(f(x) \)? Explain your reasoning. [1 point]

 b. What is the value of \(f(2) \)? [1 point]

 c. For what values of \(x \) is \(f(x) < 6 \)? [2 points]

 d. Find an equation of this function. [4 points]

 \[x \quad | \quad y = f(x) \]
 \[0 \quad | \quad 10 \]
 \[2 \quad | \quad 6 \]
 \[4 \quad | \quad 2 \]
 \[6 \quad | \quad -2 \]
 \[8 \quad | \quad -6 \]

2. a. Write an equation of the line that passes through the point \((4, -2)\) and parallel to \(y = 0.5x - 12 \). [4 points]

 b. What is the slope and \(y \)-intercept of the following equation? [2 pts]
 \[y = -4x + 9 \]

3. Solve for \(x \). [4 points each]

 a. \(-4x + 51 = 3x - 9 \)

 b. \(-(8 + 11x) < 52 \)

 c. \(|3 - 5x| = 13 \)

 d. \(x^2 + 6x - 16 \leq 3x + 2 \)
4. Simplify the following completely (leaving NO NEGATIVE EXPONENTS): [2 points each]
 a. \(\frac{12x^7}{3x^9} \)
 b. \(\frac{10x^3y^6}{30x^5y^2} \)
 c. \(\frac{\sqrt[4]{81}}{3} \)
 d. \(\sqrt{\frac{49}{225}} \)

5. Write True or False for the following. EXPLAIN your reasoning. [2 points each]
 a. \(\sqrt{a} + \sqrt{b} = \sqrt{a + b} \) for all numbers \(a, b \geq 0 \). a. ________
 b. \(\sqrt[3]{289} \) is 17. b. ________
 c. The graph of \(y = 0.31(x - 5)^2 - 9 \) opens up. c. ________
 d. \(f(x) = -5(x - 2)^2 - 5 \) and \(g(x) = -5x^2 - 20x - 5 \) are the same function, just in different forms. d. ________
6. Given the following systems of equations:
 i. Tell whether each system has infinitely many, one, or no solutions and provide a brief explanation. [2 points each]
 ii. If there is only one solution, solve the system for both variables algebraically. [2 points]
 a. $12x + 9y = 20$
 $16x + 12y = 15$
 b. $2x + 5y = 11$
 $5x + 2y = 11$
 c. $x + 2y = 4$
 $3x + 6y = 12$

7. Consider the following algebraic expression:
 \[-(7 - 15 + 17x) + (-7x + 3)\]
 a. Simplify this algebraic expression completely. [3 points]
 b. Evaluate the algebraic expression when $x = 7$ [2 points]
8. Find the real roots of the following quadratic equations, if there are any. [5 points each]
 a. \(f(x) = x^2 - 5x - 20 \)
 b. \(f(x) = x^2 + 9x + 23 \)

9. Determine whether or not the following expressions are equivalent. If they are equivalent, state by which mathematical properties and if not, state "Not Equivalent". [3 points each]
 a. \(-4(3x - 5y - 3)\) and \(12 - 12x + 20y\)
 b. \((11 - x) + 7y\) and \(11 - (x + 7y)\)
10. At a recent Syracuse University basketball game there was a total of 17,500 tickets sold. The price of an adult ticket is $30 and the price of a child ticket is $15. If the total amount collected from ticket sales was $450,000, how many adults and children bought tickets for the game?

a. Identify and assign symbols to the variables in this problem. [2 points]

b. Write the two symbolic rules relating the variables. [2 points]

c. Solve the problem to determine how many adult and child tickets were sold. [2 points]

11. Consider the following graph.

a. Write the equation of the function in the form \(y = a|x - h| + k \). [4 pts.]

b. How does \(y = 2|x + 1| + 5 \) compare to the equation you got in part a.? Support your answer with a sketch and explanation. [3 points]
12. Use the form of a quadratic function, \(y = a(x - h)^2 + k \), to answer the following about each function.

*** Note that in part b. you must first put the equation into this form. [2 points] ***

- Tell whether the function will open upwards or downwards [1 point each]
- Give the Maximum/Minimum Value of the Function [1 point each]
- Sketch both equations on the provided graphs [2 pts each]

a. \(f(x) = -3(x + 7)^2 + 12 \)

b. \(f(x) = 3x^2 - 6x + 3 \)
MAT 112 Final Exam Fall 2014
Instructor: Scott Baumgartner
December 11, 2013

Instructions:
Do not open this booklet until you are told to do so. SHOW ALL WORK required in solving the problems. No work means zero credit. You may use a calculator on any part of the exam, but you may not share a calculator with another student. If you have any questions, ask one of the proctors.

Printed name: ____________________________

Signature: ________________________________

<table>
<thead>
<tr>
<th>Question</th>
<th>Points Possible</th>
<th>Points Earned</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. Consider the table to the right:
 a. What type of function is \(f(x) \)? Explain your reasoning. [1 point]

 \[
 \begin{array}{c|c}
 x & y = f(x) \\
 \hline
 0 & 10 \\
 2 & 6 \\
 4 & 2 \\
 6 & -2 \\
 8 & -6 \\
 \end{array}
 \]

 b. What is the value of \(f(2) \)? [1 point]

 c. For what values of \(x \) is \(f(x) < 6 \)? [2 points]

 d. Find an equation of this function. [4 points]

2. a. Write an equation of the line that passes through the point \((4, -2)\) and parallel to \(y = 0.5x - 12 \). [4 points]

 b. What is the slope and \(y \)-intercept of the following equation? [2 pts]
 \(y = -4x + 9 \)

3. Solve for \(x \). [4 points each]
 a. \(-4x + 51 = 3x - 9\)
 b. \((-8 + 11x) < 52\)
 c. \(|3 - 5x| = 13\)
 d. \(x^2 + 6x - 16 \leq 3x + 2\)
4. Simplify the following completely (leaving NO NEGATIVE EXPONENTS): [2 points each]
 a. \(\frac{12x^7}{3x^9} \)
 b. \(\frac{10x^3y^6}{30x^5y^2} \)
 c. \(\frac{\sqrt[4]{81}}{3} \)
 d. \(\sqrt{\frac{49}{225}} \)

5. Write True or False for the following. EXPLAIN your reasoning. [2 points each]
 a. \(\sqrt{a + b} = \sqrt{a} + \sqrt{b} \) for all numbers \(a, b \geq 0 \).
 a. _______
 b. \(\sqrt{289} \) is 17.
 b. _______
 c. The graph of \(y = 0.31(x - 5)^2 - 9 \) opens up.
 c. _______
 d. \(f(x) = -5(x - 2)^2 - 5 \) and \(g(x) = -5x^2 - 20x - 5 \) are the same function, just in different forms.
 d. _______
6. Given the following systems of equations:
 i. Tell whether each system has infinitely many, one, or no solutions and provide a brief explanation. [2 points each]
 ii. If there is only one solution, solve the system for both variables algebraically. [2 points]

 a. \[12x + 9y = 20\]
 \[16x + 12y = 15\]

 b. \[2x + 5y = 11\]
 \[5x + 2y = 11\]

 c. \[x + 2y = 4\]
 \[3x + 6y = 12\]

7. Consider the following algebraic expression:

 \[-(7 - 15 + 17x) + (-7x + 3)\]

 a. Simplify this algebraic expression completely. [3 points]

 b. Evaluate the algebraic expression when \(x = 7\) [2 points]
8. Find the real roots of the following quadratic equations, if there are any. [5 points each]
 a. \(f(x) = x^2 - 5x - 20 \)
 b. \(f(x) = x^2 + 9x + 23 \)

9. Determine whether or not the following expressions are equivalent. If they are equivalent, state by which mathematical properties and if not, state “Not Equivalent”. [3 points each]
 a. \(-4(3x - 5y - 3)\) and \(12 - 12x + 20y\)
 b. \((11 - x) + 7y\) and \(11 - (x + 7y)\)
10. At a recent Syracuse University basketball game there was a total of 17,500 tickets sold. The price of an adult ticket is $30 and the price of a child ticket is $15. If the total amount collected from ticket sales was $450,000, how many adults and children bought tickets for the game?

a. Identify and assign symbols to the variables in this problem.

b. Write the two symbolic rules relating the variables.

c. Solve the problem to determine how many adult and child tickets were sold.

11. Consider the following graph.

a. Write the equation of the function in the form \(y = a|x - h| + k \).

b. How does \(y = 2|x + 1| + 5 \) compare to the equation you got in part a.? Support your answer with a sketch and explanation.
12. Use the form of a quadratic function, \(y = a(x - h)^2 + k \), to answer the following about each function.

*** Note that in part b. you must first put the equation into this form. [2 points] ***

- Tell whether the function will open upwards or downwards [1 point each]
- Give the Maximum/Minimum Value of the Function [1 point each]
- Sketch both equations on the provided graphs [2 pts each]

a. \(f(x) = -3(x + 7)^2 + 12 \)

b. \(f(x) = 3x^2 - 6x + 3 \)