Instructions: Do as many problems as possible in the time allotted. In what follows, \(R \) is an associative ring with unity, all \(R \)-modules are unitary left modules, and \(0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \) is an exact sequence of \(R \)-modules.

1. We say that a homomorphism \(h : A \rightarrow M \) of \(R \)-modules can be extended to \(B \) if there exists a homomorphism \(\hat{h} : B \rightarrow M \) satisfying \(h = \hat{h}f \) (draw a diagram).

 For an \(R \)-module \(M \) prove that the following statements are logically equivalent. You may use a long exact sequence for the functor \(\text{Ext} \).
 (a) Every homomorphism \(A \rightarrow M \) can be extended to \(B \).
 (b) The sequence \(0 \rightarrow \text{Hom}(C, M) \xrightarrow{\text{Hom}(g, M)} \text{Hom}(B, M) \xrightarrow{\text{Hom}(f, M)} \text{Hom}(A, M) \rightarrow 0 \) of abelian groups is exact.
 (c) The map \(\text{Ext}^1_R(C, M) \xrightarrow{\text{Ext}^1_R(g, M)} \text{Ext}^1_R(B, M) \) is a monomorphism of abelian groups.

 Recall that a monomorphism \(u : L \rightarrow M \) of \(R \)-modules is essential if, for all homomorphisms \(v : M \rightarrow N \) of \(R \)-modules, \(vu \) is a monomorphism if and only if \(v \) is a monomorphism. You may use the fact that if \(L \) is a submodule of \(M \), then the inclusion \(L \rightarrow M \) is an essential monomorphism if and only if \(L \cap X \neq 0 \) for all nonzero submodules \(X \) of \(M \).

2. If \(X \neq 0 \) is a submodule of an indecomposable injective \(R \)-module \(I \), prove that the inclusion \(i : X \rightarrow I \) is an essential monomorphism. You may use the existence of an injective envelope of \(X \), i.e., of an essential monomorphism \(j : X \rightarrow J \) where \(J \) is an injective \(R \)-module. Hint: what can you say about a homomorphism \(k : J \rightarrow I \) satisfying \(i = kj \)?

3. Let \(I \) be an indecomposable injective \(R \)-module and let \(u \) and \(v \) be \(R \)-endomorphisms of \(I \) that are not automorphisms. Using Problem 2, prove that \(u + v \) is not an automorphism of \(I \).

4. For a positive integer \(m \), set \(\mathbb{Z}/m = \mathbb{Z}/\mathbb{Z} \) and consider the exact sequence of abelian groups \(0 \rightarrow \mathbb{Z} \xrightarrow{u} \mathbb{Z} \rightarrow \mathbb{Z}/m \rightarrow 0 \) where \(u \) is multiplication by \(m \) and \(v \) is the natural projection. For a positive integer \(n \), denote by \(d \) the greatest common divisor of \(m \) and \(n \).
 (a) Compute the kernel of the homomorphism \(v \otimes 1_{\mathbb{Z}/m} : \mathbb{Z} \otimes \mathbb{Z}/m \rightarrow \mathbb{Z}/m \otimes \mathbb{Z}/m \) of abelian groups.
 (b) Prove that \(\mathbb{Z}/m \otimes \mathbb{Z}/n \) is isomorphic to \(\mathbb{Z}/d \).

5. Suppose the ring \(R \) is left artinian and denote by \(J \) the Jacobson radical of \(R \).
 (a) Show that \(J^k/J^{k+1} \) is a semisimple module of finite length for all \(k \geq 0 \). (By definition \(J^0 = R \).)
 (b) Use the fact that \(J \) is nilpotent to show that \(R \) must be left Noetherian.