Solve the following 5 problems. Support your answers with sound reasons.

1. Let k be a field, $k[x]$ the polynomial ring and (x) the principal ideal of $k[x]$ generated by x. Standard properties of modules and quotient modules give us the following short exact sequence of $k[x]$ modules.

$$0 \rightarrow (x) \rightarrow k[x] \rightarrow k[x]/(x) \rightarrow 0$$

Prove whether or not this sequence splits.

2. Let R be a ring with identity and let P a left R-module.
 (a) State the definition given in terms of a lifting property of maps, of what it means for P to be a projective module.
 (b) Prove that the definition given in (a) is equivalent to the following. The module P is projective if and only if it is a summand of a free module.

3. Prove that if R is a left artinian ring then $J(R)$ (the Jacobson radical of R) is a nilpotent ideal.

4. Let m and n be two not necessarily distinct integers both greater than or equal to 2. Consider the short exact sequence of \mathbb{Z} modules

$$0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \rightarrow 0$$

where the map $\mathbb{Z} \rightarrow \mathbb{Z}$ is multiplication by m. We may tensor over \mathbb{Z} this sequence with $\mathbb{Z}/n\mathbb{Z}$ to obtain a new sequence.

$$(\ast) \quad 0 \rightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/n\mathbb{Z} \rightarrow 0$$

(a) For which pairs of integers (m, n) is the sequence (\ast) left exact? Prove it.
(b) For which pairs of integers (m, n) is (\ast) right exact? Prove it.

5. Let R be a commutative ring with identity and $S \subset R$ a multiplicatively closed subset. There is an obvious natural homomorphism $f : R \rightarrow S^{-1}R$. State and prove a short easy to state condition on S that is necessary and sufficient for f to be injective.