Instructions. There are 4 questions worth the total of 100 points. Do all questions, and justify your answers with the necessary proofs.

1. (30 points) Recall that the lower limit topology on \(\mathbb{Q} \) is generated by the basis sets \([a, b) \cap \mathbb{Q}\) for all pairs of rational numbers \(a, b\) with \(a < b\).
 (a) Use the Urysohn metrization theorem to show that \(\mathbb{Q} \) with the lower limit topology is metrizable.
 (b) Let \(\{X_\alpha\} \) be a collection of topological spaces. State the definitions of the product topology and the box topology on \(\prod X_\alpha \).
 (c) Show that if \(\{X_\alpha\} \) is a countable collection of second countable spaces, then \(\prod X_\alpha \) with the product topology is second countable.
 (d) Show that a metric space containing a countable dense subset is second countable.

2. (20 points) Let \(f: X \rightarrow Y \) be continuous.
 (a) Suppose \(Y \) is Hausdorff. Show that the set \(\{ (x, x') \mid f(x) = f(x') \} \) is closed in \(X \times X \).
 (b) Suppose that \(f \) is a quotient map and that the subspace \(f^{-1}(y) \subset X \) is connected for every \(y \in Y \). Show that if \(Y \) is connected, then so is \(X \).

3. (25 points) Let \(\mathcal{C}(X, Y) \) be the set of all continuous functions from a space \(X \) to a metric space \(Y \), and let \(C \subset X \) be a compact subspace and \(U \subset Y \) an open subset.
 (a) Show that the set \(S(C, U) := \{ f \in \mathcal{C}(X, Y) \mid f(C) \subset U \} \) is open in \(\mathcal{C}(X, Y) \) in the topology of uniform convergence.
 (b) Let \(f_n: [0, 1] \rightarrow \mathbb{R} \) (\(\mathbb{R} \) = the real numbers with the usual metric) be defined by
 \[
 f_n(x) := \min\{|nx - 1|, 1\}
 \]
 Show that \(\{f_n\} \) converges pointwise but not uniformly to the constant function \(f(x) = 1 \).
 (c) Give an example to show that \(S(C, U) \) need not be open in \(\mathcal{C}(X, Y) \) in the topology of pointwise convergence.

4. (25 points) Let \(X, Y \) be spaces with basepoints \(x \in X, y \in Y \).
 (a) Show that \(\pi_1(X \times Y, x \times y) \) is isomorphic to \(\pi_1(X, x) \times \pi_1(Y, y) \).
 (b) Show that there is no retraction of \(S^1 \times B^2 \) onto \(S^1 \times S^1 \) where \(S^1 \) is the unit circle in \(\mathbb{R}^2 \) and \(B^2 \) the closed unit disk in \(\mathbb{R}^2 \).
 (c) Let \(M_n(\mathbb{C}) \) be the set of all complex \(n \times n \) matrices with the topology induced from the standard topology on \(\mathbb{C}^{n^2} \) via the bijection \(A = (a_{ij}) \mapsto (a_{11}, a_{12}, \ldots, a_{21}, \ldots, a_{nn}) \), and let \(GL_n(\mathbb{C}) \) be the subspace of all matrices satisfying \(\det(A) \neq 0 \). Show that \(GL_n(\mathbb{C}) \) is not simply connected.