1. Let X be a metric space. Suppose that $A_n, n = 1, 2, 3, \ldots$ are nonempty compact subsets of X such that $A_{n+2} \subset A_n \cup A_{n+1}$ for every $n \geq 1$. Prove that there exists a point $x \in X$ such that $x \in A_n$ for infinitely many values of n.

2. Suppose that $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to (0, \infty)$ are continuous functions. For $x \in \mathbb{R}$ define
 \[h(x) = \sup_{0 < t < g(x)} f(t) \]
 (a) Prove that $h : \mathbb{R} \to \mathbb{R}$ is continuous.
 (b) Give an example in which f is uniformly continuous on \mathbb{R} but h is not.

3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function such that $f'(x + 1) = f'(x)$ for all $x \in \mathbb{R}$. Prove that the limit $\lim_{x \to +\infty} \frac{f(x)}{x}$ exists and is finite.

4. Let $f_n : \mathbb{R} \to \mathbb{R}, n = 1, 2, \ldots$, be C^1-functions; that is, continuously differentiable functions such that, for all n,
 \[|f'_n(x)| \leq \frac{1}{\sqrt{x}} \quad (0 < x \leq 1) \quad \text{and} \quad \int_0^1 f_n(x) \, dx = 0. \]
 Prove that the sequence $\{f_n\}$ has a subsequence that converges uniformly on $[0, 1]$.

5. Suppose that $f : \mathbb{R}^2 \to \mathbb{R}^2$ is a C^1-mapping with $\det f'(x) > 0$ for all $x \in \mathbb{R}^2$. Assume that $f^{-1}(K)$ is compact whenever $K \subset \mathbb{R}^2$ is compact. Prove that $f(\mathbb{R}^2) = \mathbb{R}^2$.

6. Let $f : \mathbb{R} \to \mathbb{R}$ be a C^1-function with $f'(x) > 0$ for all $x \in \mathbb{R}$. Suppose that f takes the interval $[0, 1]$ onto itself. Prove that there is a sequence of polynomials $p_n : [0, 1] \to [0, 1]$ such that $p_n \to f$ uniformly on $[0, 1]$ and each p_n is a strictly increasing function on $[0, 1]$.

1