1. Show that a group of order 105 is not simple.

2. Let G be a group with subgroups H and K.
 (a) Let $x, y \in H$ with $x(H \cap K) = y(H \cap K)$. Prove that $xK = yK$.
 (b) Show that $[H : H \cap K] \leq [G : K]$, where $[G : K]$ denotes the index of K in G.
 (c) If $[G : K]$ and $[G : H]$ are both finite, show that $[G : H \cap K]$ is finite.

3. (a) Let G be a finite abelian group and assume that m divides $|G|$. Show that G has a subgroup of order m.
 (b) Give an example to show that the result in (a) is false if G is not assumed to be abelian.

4. Let $A \in M_n(\mathbb{C})$ be a matrix over the complex numbers \mathbb{C} with $A^* = -A$, where A^* denotes the complex conjugate transpose of A. Let $\langle x, y \rangle = x^*y$ be the usual inner product on $\text{Col}_n(\mathbb{C})$.
 (a) Show that the eigenvalues of A are purely imaginary.
 (b) If λ and μ are distinct eigenvalues of A with eigenvectors v and w in $\text{Col}_n(\mathbb{C})$ respectively, show that $\langle v, w \rangle = 0$.

5. Let $A \in M_n(\mathbb{C})$ be a matrix over the complex numbers \mathbb{C}.
 (a) If A is similar to a diagonal matrix and $f(x) \in \mathbb{C}[x]$ is a polynomial, show that $f(A)$ is similar to a diagonal matrix.
 (b) If A^2 is similar to a diagonal matrix, does it follow that A is similar to a diagonal matrix?

6. Let $i \in \mathbb{C}$ be the square root of -1.
 (a) Prove that $\mathbb{Z}[i] := \{a + bi \mid a, b \in \mathbb{Z}\}$ is isomorphic to $\mathbb{Z}[x]/(x^2 + 1)$.
 (b) Let $p \in \mathbb{Z}$ be a prime integer. Prove that p is a prime element in $\mathbb{Z}[i]$ (a “Gaussian prime”) if and only if $x^2 + 1$ is an irreducible element of $\mathbb{F}_p[x]$. (Here \mathbb{F}_p is the field with p elements. You may use without proof the fact that $\mathbb{F}_p[x]$ is a PID.)

7. Let $\omega \in \mathbb{C}$ be a primitive 8th root of unity and set $F = \mathbb{Q}(\omega)$.
 (a) Prove that there are exactly three subfields $E \subset F$ with $[E : \mathbb{Q}] = 2$.
 (b) For each E above, find (with justification) an element $a \in E$ such that $E = \mathbb{Q}(\alpha)$.

8. Let R be a commutative ring and M an R-module. An R-submodule N of M is called maximal if $N \neq M$ and there are no proper R-submodules of M properly containing N.
 (a) Suppose M is finitely generated. Prove that there exists at least one maximal R-submodule of M.
 (b) Prove that if N is a maximal R-submodule of M, then $M/N \cong R/m$, where m is a maximal ideal of R.

1
9. Reduce the matrix
\[
A = \begin{bmatrix}
3 & 1 & -4 \\
2 & -3 & 1 \\
-4 & 6 & -2
\end{bmatrix}
\]
to diagonal form over \(\mathbb{Z} \), and express the cokernel of \(A \) (that is, \(\text{Col}_3(\mathbb{Z})/\text{image}(A) \)) as a direct sum of cyclic groups.

10. Let \(F \) be a finite field. Prove that the multiplicative group \(F^\times \) of non-zero elements of \(F \) is a cyclic group. (Hint: a polynomial of degree \(n \) over a field has at most \(n \) roots.)