Algebra Preliminary Examination, January 13, 2011

Print name:

Solve as many problems as you can. Show your work, give reasons for your answers, provide all necessary proofs and counterexamples. There are 8 problems on 15 pages worth the total of 100 points. Check that you have a complete exam.

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Total

Do NOT write mathematics on this page.
1. Let P be the real vector space of polynomials $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ of degree $\leq n$, and let D denote the derivative $\frac{d}{dx}$ considered as a linear operator on P.

(a) (6 points) Find the matrix of D with respect to a convenient basis, and prove that D is a nilpotent operator.
1. (continued)

(b) (6 points) Determine all the D-invariant subspaces. *Hint:* consider a polynomial of the highest degree in a D-invariant subspace.
2. Let G be a group with a subgroup H (H need not be normal). The set G/H of left cosets of H in G is a left G-set by means of $g \circ xH = gxH$, $g, x \in G$.

(a) (5 points) Prove that for each $a \in G$, the G-sets G/H and G/aHa^{-1} are isomorphic. Recall that a map $\phi : X \rightarrow Y$ of left G-sets is a homomorphism if $\phi(gx) = g\phi(x)$ for all $g \in G$, $x \in X$; an isomorphism is a bijective homomorphism; and X, Y are isomorphic if there exists an isomorphism $X \rightarrow Y$. Hint: the right multiplication by a^{-1} is a bijective map $G \rightarrow G$.

(b) (6 points) Let K a subgroup of G. Prove that if the G-sets G/H and G/K are isomorphic, then $K = aHa^{-1}$, for some $a \in G$. Hint: if $\phi : X \rightarrow Y$ is an isomorphism of G-sets, compare the stabilizers of $x \in X$ and $\phi(x) \in Y$.

2. (continued)

(c) (2 points) State the necessary and sufficient condition for the G-sets G/H and G/K to be isomorphic.
3. (a) (6 points) Prove that no group of order 56 is simple.
3. (continued)

(b) (7 points) Prove that a group of order 77 is cyclic.
4. (12 points) Let A be the matrix of a real symmetric bilinear form \langle , \rangle with respect to some basis. Prove or disprove: The eigenvalues of A are independent of the basis.
5. Let R be a commutative ring and I an ideal of R.

(a) (4 points) Let $I[X] \subseteq R[X]$ be the subset of the polynomial ring consisting of polynomials with coefficients in I. Prove that $I[X]$ is an ideal of $R[X]$.

(b) (8 points) The quotients $R[X]/I[X]$ and $R[X]/(I, X)$ are isomorphic to $(R/I)[X]$ and R/I, not necessarily in that order. Decide which is which and prove your answers.
5. (continued)
6. Let A be a square matrix over the complex numbers. Assume that the minimal polynomial of A is $x^2(x - 5)$ and the characteristic polynomial of A is $x^5(x - 5)^2$.

(a) (6 points) Give all the possible rational canonical forms for A.
6. (continued) (b) (6 points) Give all the possible Jordan canonical forms for A.
7. (12 points) An Abelian group is generated by four elements \{a, b, c, d\}, subject to the relations \(a + 3b + 3c + 5d = 0\), \(a + b + c = 0\), \(2b + 2c + 2d = 0\), and \(3c = 0\). Express this group as a direct sum of cyclic groups.
8. (14 points) Let p be a prime integer and set $f(x) = x^p - 2 \in \mathbb{Q}[x]$. Determine the splitting field of f and the elements of its Galois group over \mathbb{Q}. (You do not need to classify the structure of the group up to isomorphism, just its elements.)
extra sheet