1. If F_1 and F_2 are closed subsets of \mathbb{R}^1 and $\text{dist}(F_1, F_2) = 0$ then $F_1 \cap F_2 \neq \emptyset$. Prove or give a counterexample.

2. Newton’s method for finding zeroes of a function $f : \mathbb{R}^1 \to \mathbb{R}^1$ is based on the recursion formula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n \geq 1.$$

Show that if $f \in C^1$, $f(a) = 0$ and $f'(a) \neq 0$, then there exists a $\delta > 0$ such that if $|x_1 - a| < \delta$ then $x_n \to a$. (Suggestion: use the Mean Value Theorem.)

3. Let $f : [0, \infty) \to [0, \infty)$ and for $h > 0$ and $k \geq 1$ set

$$M_k(h) = \sup_{(k-1)h \leq x < kh} f(x), \quad m_k(h) = \inf_{(k-1)h \leq x < kh} f(x).$$

Let

$$U(h) = \sum_{k=1}^{\infty} M_k(h)h, \quad L(h) = \sum_{k=1}^{\infty} m_k(h)h.$$

We say f is directly Riemann integrable if $U(h) < \infty$ for all $h > 0$ and

$$\lim_{h \downarrow 0} (U(h) - L(h)) = 0.$$

Recall f is improperly Riemann integrable on $[0, \infty)$ if f is Riemann integrable on $[0, a]$ for every $a > 0$, and

$$\lim_{a \to \infty} \int_0^a f(t) \, dt < \infty.$$

(a) Show that if f is continuous and nonincreasing, then f is directly Riemann integrable whenever f is improperly Riemann integrable on $[0, \infty)$.

(b) Give an example of a continuous function f which is improperly Riemann integrable on $[0, \infty)$ but not directly Riemann integrable.

4. Suppose $f : [0, \infty) \to [0, \infty)$ is such that for any sequence a_n of nonnegative terms we have

$$\sum_{n=1}^{\infty} a_n < \infty \implies \sum_{n=1}^{\infty} f(a_n) < \infty.$$

Prove that

$$\limsup_{x \to 0^+} \frac{f(x)}{x} < \infty.$$
5. Let \(f \) be a continuous real valued function defined on the unit square and for each \(0 \leq x \leq 1 \) let \(f_x \) be the function on the unit interval defined by \(f_x(y) = f(x, y) \). Prove that for any sequence \(x_n \) in \([0,1]\) there is a subsequence \(n_k \) such that \(f_{x_{n_k}} \) converges uniformly on \([0,1]\).

6. If \(c \) is a real parameter prove that \(x^7 + x + c = 0 \) has a unique real root and that this root is a differentiable function of \(c \).