Math 284, Final Exam (Spring 2007)

Student Name:

Student Number:

Lecture Class Instructor Name (check one): Datta, Gogus, Xu

Recitation Class Instructor Name:

Problem 1:

Problem 2:

Problem 3:

Problem 4:

Problem 5:

Problem 6:

Problem 7:

Problem 8:

Problem 9:

Problem 10:

Total:
1. (a) (5 points) Find an equation of the line passing through the point $(-2, 6)$ and perpendicular to the line $3y + 8x = 4$.

(b) (5 points) Rewrite the equation you found in part (a) as a general linear equation.

(c) (5 points) Find the x-intercept and y-intercept of the equation you found in part (a).

x-intercept =

y-intercept =

2. (10 points) Find the equilibrium point if the supply and demand equations are

\[p = 2q + 10 \quad \text{and} \quad p = 20 - q, \]

respectively.
3. (a) (5 points) Find x, if $\log_x(6 + 4x - x^2) = 2$.

(b) (5 points) Find x, if $g^{2x+1} = 3$.

4. Find the limits:
(a) (5 points) $\lim_{t \to 2} \frac{t-2}{t^2-5t+6}$
(b) (5 points) \(\lim_{x \to \infty} \frac{5x^2 - 2x^2 + 7}{4x - x^3} \)

(c) (5 points) \(\lim_{x \to 3} \frac{2x}{x - 3} \)

5. (12 points) Use the definition of the derivative to find \(f'(x) \) if \(f(x) = x^2 + x \).
6. (11 points) Find an equation of the tangent line to the curve \(y = x^4 - 2x^3 + 3x - 4 \) when \(x = 1 \).

7. Find the derivative \(y' \) of the following functions:

 (a) (5 points) \(y = 2^{2x} \)

 (b) (5 points) \(y = \log_2(x^2 + 1) \)

 (c) (5 points) \(y = \left(\frac{x^3 - 1}{x^2 - 2}\right)^5 \)
8. Let \(f(x) = x^4 - 2x^2 + 4 \) be the given function.
(a) (5 points) Find the intervals where the function \(f \) is decreasing or increasing.

(b) (5 points) Find the intervals where the function \(f \) is concave up or concave down.

(c) (5 points) Find relative maxima and minima of \(f \).

9. Find the indefinite integrals for the following functions:
(a) (5 points) \(\int x^4 \, dx \)
10. (12 points) If the marginal-revenue function for a manufacturer’s product is

\[\frac{dr}{dq} = 2001 - 10q - 3q^2 \]

find the demand function.