Measure Theory Part

1. Let \(\{r_n\}_{n=1}^\infty \) be the rationals, \(f(x) = x^{-1/2} \) for \(0 < x < 1 \) and 0 otherwise, and set \(g(x) = \sum_{n=1}^\infty 2^{-n} f(x - r_n) \). Is \(f(x) \) measurable? Why? Is \(g(x) \) measurable? Why? What is the set of points of discontinuity of \(g \)? Is \(g \) integrable? Why? Show that \(g \) is not in \(L^2 \) on any interval.

2. Let \(\mu \) be Lebesgue measure on the borel sets of the real line, and define \(\nu(E) \) to be 1 if \(0 \in E \) and 0 if \(0 \notin E \) for all borel sets \(E \). Is \(\nu \) a measure? \(\sigma \) finite? Compute \(\frac{d\nu}{d\mu} \).

3. Define \(L^p \) (Lebesgue measure). Is \(L^2(\mathbb{R}) \subseteq L^1(\mathbb{R}) \)? Why? Is \(L^2(0, 1) \subseteq L^1(0, 1) \)? Why?

4. Let \(f_k \to f \) in \(L^p \), \(1 \leq p < \infty \), \(g_k \to g \) pointwise and \(\|g_k\|_\infty \leq M \) for all \(k \). Prove that \(f_k g_k \to fg \) in \(L^p \).

Complex Part

1. Let \(f \) be an analytic function on the unit disk and \(f(z) \) is real when \(z \) is real. Show that \(\overline{f}(z) = f(z) \).

2. Let \(\{f_n\} \) be a sequence of continuous functions on the closed unit disk that are analytic in the open unit disk. Suppose \(\{f_n\} \) converges uniformly on the unit circle. Show that \(\{f_n\} \) converges uniformly on the closed unit disk.

3. Suppose that \(f \) is an analytic function on an open set containing the closed unit disk, \(|f(z)| = 1 \) when \(|z| = 1 \) and \(f \) is not a constant. Prove that the image of \(f \) contains the closed unit disk.

4. Let \(\mathcal{F} \) be a family of analytic function

\[
 f(z) = z + \sum_{n=2}^\infty a_n z^n
\]
on the open unit disk such that \(|a_n| \leq n \) for each \(n \). Show that \(\mathcal{F} \) is normal, i.e. every sequence of functions in \(\mathcal{F} \) contains a subsequence converging normally to a function in \(\mathcal{F} \).