1. Let X be a metric space and let A_j be subsets of X, $j = 1, 2, \ldots$. For each of the following statements, prove it or give a counterexample (the $'$ means limit points):

(i) $(A_1 \cup A_2)' \subseteq A_1' \cup A_2'$

(ii) $\bigcup_{j=1}^{\infty} A_j \subseteq \bigcup_{j=1}^{\infty} A_j$.

2. Prove that the series $\sum_{n=1}^{\infty} \frac{n^2}{n!}$ is convergent and find its sum.

3. Let $f : (-1, 1) \to \mathbb{R}$ be a differentiable function such that $f(0) = 0$ and $f''(0) \in \mathbb{R}$ exists. Prove that the limit $\lim_{x \to 0} \frac{f(2x) - 2f(x)}{x^2}$ exists.

4. (a) Let $f^4 \in \mathcal{R}$ (this means f^4 is integrable dx on some closed interval) prove or disprove, $f \in \mathcal{R}$.
 (b) Let $f^5 \in \mathcal{R}$ prove or disprove, $f \in \mathcal{R}$.

5. Let $f(x, y)$ be a real continuous function on the rectangle $[0, 1] \times [0, 2]$. Given $\epsilon > 0$ show that there exists n and real continuous functions $g_i(x)$ on $[0, 1]$ and $h_i(y)$ on $[0, 2]$ for $i = 1, \ldots, n$ so that

\[|f(x, y) - \sum_{i=1}^{n} g_i(x)h_i(y)| < \epsilon \]

for all (x, y) in the rectangle.

6. Given the equations $x - f(u, v) = 0$ and $y - g(u, v) = 0$ (a) give conditions that assure you can solve for (x, y) in terms of (u, v) and (b) similarly that you can solve for (u, v) in terms of (x, y). (c) Assuming these conditions are satisfied prove that

\[\frac{\partial x(u, v)}{\partial u} \frac{\partial u(x, y)}{\partial x} = \frac{\partial y(u, v)}{\partial v} \frac{\partial v(x, y)}{\partial y} \]