1. Integrate the following indefinite integrals:
 (a). $\int \left(\frac{1}{x^2} + \frac{3}{x} - x^4 + \sin(x) - \tan(x) \right) dx$

 (b). $\int x^3 (x^4 + 10)^{\frac{1}{2}} dx$

2. Evaluate the following definite integrals:
 (a). $\int_0^2 \frac{x}{x^2 + 1} dx$

 (b). $\int_0^{2\pi} \cos \left(\frac{x}{4} \right) dx$
3. An object is moving along a line with acceleration \(a(t) = -2t^2 + t \) meters/hour\(^2\). Initially, its velocity is 1 meter/hour and its position on the line is at the 3 meter mark.

(a). Find the velocity \(v(t) \) of the object at time \(t \).

(b). Find the position \(s(t) \) of the object at time \(t \).

4. (a). Set up integral(s) for the area between the curves \(y = x^2 \) and \(y = 8 - x^2 \). Make a sketch. Do NOT evaluate.

(b). Set up integral(s) for the area between the curves \(y = x \) and \(y = x^3 \). Make a sketch. Do NOT evaluate.
5. Evaluate the following indefinite integrals:
 (a). \(\int (x + 1) \sin(2x) \, dx \)
 (b). \(\int 2x^2 e^{2x} \, dx \)

6. A solid of revolution is formed by rotating about the x-axis the region bounded by the curve from \(y = \sqrt{x}(4 - x^2) \) from \(x = 1 \) to \(x = 2 \). Find the volume of the solid.
7. The total cholesterol level of a patient on a special diet and medication is approximately
\[C(t) = 190 + 90e^{-1.6t}, \]
where \(t \) is in months. Find the average total cholesterol over the first 4 months of being on the special diet and medication.

8. Determine whether or not the following improper integrals converge. If the integral converges, give its value.

 (a). \[\int_{1}^{\infty} \frac{2x}{(x^2 + 1)^2} \, dx \]

 (b). \[\int_{-\infty}^{\infty} x^2 e^{-x^3} \, dx \]
9. Evaluate the following double integrals:

(a). \(\int \int_{R} (xy + y^2) \, dx \, dy \), where \(R \) is the region \(1 \leq x \leq 2, \, 0 \leq y \leq 1 \). Make a sketch of \(R \).

(b). \(\int \int_{R} (x + y) \, dx \, dy \), where \(R \) is the region \(0 \leq x \leq 1, \, 0 \leq y \leq x^2 \). Make a sketch of \(R \).
10. Solve the following differential equations for a general solution:

(a). \(y \frac{dy}{dx} = x^2(2 + y^2) \)

(b). \(\frac{dy}{dt} = -ty + te^{-t^2} \)

11. Set up the integral for the volume of the solid under the surface \(z = x + 3y^2 \) and above the rectangle \(0 \leq x \leq 10, \ 2 \leq y \leq 5. \)
12. Initially, a tank contains 300 gallons of brine with 25 pounds of salt dissolved in it. Brine enters the tank at a rate of 4 gallons per hour and contains 2 pounds of salt per gallon. Brine leaves the tank at the rate of 4 gallons per hour.
(a). Set up the differential equation for the amount y of salt in the tank at time t.

(b). Solve the differential equation in part (a).

(c). How much salt is in the tank when $t = 150$ hours? Give units.

(d). In the distant future, how much salt is in the tank? Give units.