1. For a positive integer n, denote by P_n the vector space of real polynomials of degree at most $n - 1$.
 (a) Given a real number α, prove that the polynomials $1, x - \alpha, (x - \alpha)^2, \ldots, (x - \alpha)^{n-1}$ form a basis for P_n.
 (b) Find the coordinates of the polynomial $f(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1}$ with respect to the basis from (a).

2. Let λ be an eigenvalue of a linear transformation σ of a finite-dimensional vector space V over a field F, $\sigma : V \rightarrow V$. Denote by $S(\lambda)$ the set of all eigenvectors of σ corresponding to λ, together with the zero vector. Prove:
 (a) $S(\lambda)$ is an invariant subspace of σ.
 (b) $\dim S(\lambda)$ does not exceed the multiplicity of λ as a root of the characteristic equation of σ.

3. Let A be a complex matrix with characteristic polynomial $(x + 3)^4 (x - 8)^3$ and minimal polynomial $(x + 3)^3 (x - 8)^2$. What is the Jordan form for A?

4. Let α, β be vectors in a finite-dimensional vector space V over a field F.
 (a) If $\alpha \neq 0$, show there exists a linear functional ϕ satisfying $\phi(\alpha) \neq 0$.
 (b) Prove. If $\phi(\beta) = 0$ implies $\phi(\alpha) = 0$ for all linear functionals ϕ, then $\alpha = c\beta$ for some $c \in F$.

5. (a) Determine whether the real quadratic form $q(x, y, z) = x^2 + 3y^2 + 4z^2 + 4xy - xz$ is positive definite.
 (b) Can the polar form of $q(x, y, z)$ be used to define an inner product on the 3-dimensional real vector space \mathbb{R}^3? Explain.

6. Let ϕ be a normal transformation of a finite-dimensional unitary space, and let α be an eigenvector of ϕ corresponding to an eigenvalue λ. Prove α is an eigenvector of ϕ^* corresponding to the eigenvalue $\bar{\lambda}$.