1. Let A be the 4×4 real matrix

$$A = \begin{bmatrix}
1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 0 \\
-2 & -2 & 2 & 1 \\
1 & 1 & -1 & 0
\end{bmatrix}.$$

Show that the characteristic polynomial for A is $x^2(x - 1)^2$ and that it is also the minimal polynomial. Is A similar over the field of complex numbers to a diagonal matrix?

2. Let N_1 and N_2 be 6×6 nilpotent matrices over the field F. Suppose that N_1 and N_2 have the same minimal polynomial and the same nullity. Prove that N_1 and N_2 are similar. Show that this is not true for 7×7 nilpotent matrices.

3. Let V be an inner product space and β, γ fixed vectors in V. Show that $T\alpha = (\alpha|\beta)\gamma$ defines a linear operator on V. Show that T has an adjoint, and describe T^* explicitly.
Now suppose V is \mathbb{C}^n with the standard inner product, $\beta = (y_1, \ldots, y_n)$, and $\gamma = (x_1, \ldots, x_n)$. What is the j, k entry of the matrix of T in the standard ordered basis? What is the rank of this matrix?

4. Let V be the vector space of the polynomials over \mathbb{R} of degree less than or equal to 3, with the inner product

$$(f|g) = \int_0^1 f(t)g(t)dt.$$

If t is a real number, find the polynomial g_t in V such that $(f|g_t) = f(t)$ for all F in V. Let D be the differentiation operator on V. Find D^*.

5. Let V be a finite-dimensional inner product space, and let W be a subspace of V. Then $V = W \oplus W^\perp$, that is, each α in V is uniquely expressible in the form $\alpha = \beta + \gamma$, with β in W and γ in W^\perp. Define a linear operator U by $U(\alpha) = \beta - \gamma$.

(a) Prove that U is both self-adjoint and unitary.
(b) If V is \mathbb{R}^3 with the standard inner product and W is the subspace spanned by $(1, 0, 1)$, find the matrix of U in the standard ordered basis.

6. Prove that a normal and nilpotent operator is the zero operator.