1. Let \(\{a_n\} \) be a sequence of nonnegative numbers such that \(\sum_{n=0}^{\infty} a_n = 1 \). The power series
\[
f(x) = \sum_{n=0}^{\infty} a_n x^n
\]
converges for all \(x \in [-1,1] \). If \(L \) denotes the left-hand derivative of \(f \) at \(x = 1 \), \(L = \lim_{x \to 1^-} \frac{f(1) - f(x)}{1-x} \), show that
\[
L = \sum_{n=1}^{\infty} na_n,
\]
including the case \(+\infty = +\infty \).

2. Let \(\{f_n\} \) be a sequence of continuously differentiable functions on \(\mathbb{R} \) such that \(f_n(0) = 0 \) for all \(n \), \(f'_n \cdot f'_m \equiv 0 \) for all \(n \neq m \), and \(f'_n \to 0 \) uniformly on \(\mathbb{R} \) as \(n \to \infty \).
 (a) Prove that \(\sum_{i=1}^{\infty} f'_n \) converges uniformly and absolutely on \(\mathbb{R} \). Let \(g = \sum_{i=1}^{\infty} f'_n \).
 (b) Prove that \(\sum_{i=1}^{\infty} f_n \) converges pointwise on \(\mathbb{R} \). Let \(f = \sum_{i=1}^{\infty} f_n \).
 (c) Show that \(f \) is differentiable on \(\mathbb{R} \), and that \(f'(x) = g(x) \) for all \(x \in \mathbb{R} \).

3. Let \(g, f_n, n = 1, 2, \ldots \) be real valued functions defined on \([0, \infty) \) such that: (i) each \(f_n \) is Riemann integrable on every interval \([0, T] \), \(T < \infty \); (ii) \(|f_n(x)| \leq g(x) \) for all \(n \) and \(x \); (iii) \(\int_0^\infty g(x)dx < \infty \), and (iv) there is a function \(f \) such that \(f_n \to f \) uniformly on every interval \([0, T] \) as \(n \to \infty \). Prove, without using results from Lebesgue integration theory, that the improper Riemann integrals \(\int_0^\infty f_n(x)dx \) and \(\int_0^\infty f(x)dx \) exist, and
\[
\lim_{n \to \infty} \int_0^\infty f_n(x)dx = \int_0^\infty f(x)dx.
\]

4. Determine the convergence (absolute or conditional) or divergence of the following series:
 (a) \(\sum_{n=1}^{\infty} (-1)^n \frac{\ln(n)}{\sqrt{n}} \)
 (b) \(\sum_{n=1}^{\infty} n^2[\pi^{1/n} - 1]^n \)
 (c) \(\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdots (2n)}{3 \cdot 5 \cdots (2n+1)} \)
 (d) \(\sum_{n=1}^{\infty} n! e^{-n} \)