1. Let $f : (0, 1) \rightarrow \mathbb{R}$ be continuous, bounded and decreasing. Prove that f is uniformly continuous on $(0, 1)$.

2. Consider the function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, given by $f(x) = \sum_{j=1}^{n} \frac{x_j^3}{||x||^2}$ if $x \neq 0$, and $f(0) = 0$, where $x = (x_1, \ldots, x_n)$ and $||x||$ is the Euclidean norm of x. Prove that f is continuous on \mathbb{R}^n.

3. Prove that the system
 \[
 xy^5 + yu^5 + zu^5 = 1, \\
 x^5y + y^5u + z^5v = 1,
 \]
has a unique solution $u = f(x, y, z)$, $v = g(x, y, z)$, in a neighborhood of the point $(u, v, x, y, z) = (1, 0, 0, 1, 1)$. Find $\frac{\partial u}{\partial x}(0, 1, 1)$.

4. Let \mathbb{Q}_0 be the set of rationals in the interval $[0, 1]$. For a bounded function $f : \mathbb{Q}_0 \rightarrow \mathbb{R}$, and $n = 1, 2, \ldots$, define
 \[
 S_n(f) = \frac{1}{n} \sum_{k=1}^{n} f(k/n).
 \]
 If $\lim_{n \to \infty} S_n(f)$ exists, we say that f is S-summable, and let $S(f) = \lim_{n \to \infty} S_n(f)$ denote this limit. Let f_1, f_2, \ldots be bounded functions on \mathbb{Q}_0 which are S-summable, and suppose that $f_k \to f$ uniformly on \mathbb{Q}_0 as $k \to \infty$. Prove that f is S-summable, and that $\lim_{k \to \infty} S(f_k) = S(f)$.

5. Let a_1, a_2, \ldots be a sequence of real numbers such that $\lim_{k \to \infty} a_k = L \in \mathbb{R}$ exists. For $0 < p < 1$ define
 \[
 A(p) = \sum_{k=1}^{\infty} p(1 - p)^{k-1} a_k.
 \]
 Prove that this sum converges, and that $\lim_{p \to 0} A(p) = L$.

6. Prove that
 \[
 \lim_{n \to \infty} \frac{1}{n^{5/2}} \sum_{k=1}^{n} k^{3/2} = \frac{2}{5}.
 \]