1. Let \(T: V \rightarrow W \) be a linear transformation of finite dimensional vector spaces. Assume that rank \(T = k \). Prove that there exist ordered bases \(B \) for \(V \), and \(C \) for \(W \), such that the matrix representation of \(T \) with respect to \(B \) and \(C \) has the following property: its \((i,i)\) entry equals one for \(i = 1,2,\ldots,k \), and all its other entries are zero.

2. Suppose \(V = W_1 \oplus W_2 \) and that \(f_1 \) and \(f_2 \) are inner products on \(W_1 \) and \(W_2 \) respectively. Show that there is a unique inner product \(f \) on \(V \) such that
 (a) \(W_2 = W_1^f \);
 (b) \(f(\alpha,\beta) = f_k(\alpha,\beta) \) when \(\alpha,\beta \) are in \(W_k \), \(k = 1,2 \).

3. Let \(V \) be an \(n \)-dimensional vector space and let \(T \) be a linear operator on \(V \). Suppose that there exists a positive integer \(k \) such that \(T^k = 0 \). Prove that \(T^n = 0 \). What is the characteristic polynomial for \(T \)?

4. Suppose \(B = \begin{pmatrix} -3 & 1 & -1 \\ -7 & 5 & -1 \\ -6 & 6 & 2 \end{pmatrix} \). Find:
 (a) the characteristic polynomial and the eigenvalues of \(B \);
 (b) a maximal set \(S \) of linearly independent eigenvectors of \(B \).
 (c) Is \(B \) diagonalizable?

5. If \(A \) is a square matrix with characteristic polynomial \(f(x) = (x-2)^3 (x+3)^4 \) and minimal polynomial \(g(x) = (x-2)(x+3)^2 \), give all possible Jordan normal forms for \(A \).

6. Let \(T: V \rightarrow W \) be a linear transformation with \(\text{dim } V = n \), \(\text{dim } W = m \), and rank \(T = k \). Let \(T^*: W^* \rightarrow V^* \) be the dual linear transformation. What are the rank and the nullity of \(T^* \)?