Preliminary Exam, August 1995.

1. Suppose A is a matrix over the complex numbers with characteristic polynomial $(x + 2)^2(x - 1)^5$. If the rank of $(A - I)^2$ is 3 and the rank of $(A + 2I)$ is 5, where I denotes the identity matrix, what are the possibilities for the Jordan Canonical Form of A?

2. Suppose that E is an idempotent linear operator on a vector space, that is $E^2 = E$. Show that the only possible characteristic values for E are 0 and 1.

3. Suppose V is a vector space with a finite spanning set $S = \{v_1, v_2, \ldots, v_n\}$. Show that S contains a basis for V.

4. Assume V is a finite dimensional vector space of dimension n and let T and S be linear operators on V, both with rank strictly greater than $\frac{n}{2}$. Show that the composition SoT is nonzero.

5. (a) Suppose $T:V \rightarrow W$ is a linear transformation between the vector spaces V and W. What is meant by T^t, the transpose of T?

(b) Assume $S: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is given by $S(x,y) = (x+y, 2x-y)$. Let $\{f_1, f_2\}$ be the dual basis of the standard basis $\{e_1, e_2\}$ for \mathbb{R}^2, where $e_1 = (1,0)$ and $e_2 = (0, 1)$. Find $S^t(f_2)$.

6. (a) Let V be an inner product space with inner product (\cdot, \cdot), and assume $T:V \rightarrow V$ is a linear operator on V. What does it mean to say that T is self adjoint? What does it mean to say that T is normal?

(b) Let P_2 be the inner product space of polynomials of degree at most two over the real numbers, with the inner product $(fg) = \int_1^1 fg$. If ϕ is a linear functional defined on P_2 by $\phi(f) = f(0)$, find $h \in P_2$ with $\phi(f) = (f|h)$.