1. Let A be a matrix and assume A^2 has characteristic polynomial $x^3(x-1)^2$ and minimal polynomial $x^2(x-1)$. What are the possible Jordan canonical forms of A?

2. Let $T: V \rightarrow W$ be a linear transformation between two vector spaces V and W. Show that T is injective if and only if $Ker(T) = \{ v \in V \mid T(v) = 0 \}$ only contains the vector 0.

3. Let $T: V \rightarrow W$ be a linear transformation between two finite dimensional vector spaces V and W. Show that T is an isomorphism if and only if the dual map $T^*: W^* \rightarrow V^*$ is an isomorphism.

4. Let $T: V \rightarrow V$ be a linear operator on a vector spaces V and assume v_1, v_2, \ldots, v_k are eigenvectors of T corresponding to the distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_k$. Show that v_1, v_2, \ldots, v_k are linearly independent.

5. Suppose A is an $n \times n$ matrix over the real numbers R. Show that A is diagonalizable over R if and only if we can find a basis for R^n consisting of eigenvectors for A.

6. (a) Assume T is a normal linear operator on a finite dimensional complex inner product vector space. Show that eigenvectors corresponding to distinct eigenvalues are orthogonal.

 (b) Show by example that this need not be true if T is not normal.