1. A 5-by-5 matrix A has characteristic polynomial $(x - 2)^3(x + 1)^2$, while the matrix $(A - 2I_5)^2$ has rank 2 and $A + I_5$ has rank 4. What are the possible Jordan canonical forms of A?

2. If A is a Hermitian complex matrix, show that its characteristic values must be real. [Recall that A is called Hermitian (or self adjoint) if it satisfies the equation $A = A^\dagger$, where A^\dagger is the complex conjugate of the transpose of A.]

3. Let V be a vector space with basis $B = \{v_1, v_2, \ldots, v_n\}$ and let $w \in V$ be nonzero. Show directly, without quoting the dimension theorem, that we can find i such that we can replace v_i in B by w and still have a basis for V.

4. Let V, (\cdot, \cdot) be a finite dimensional inner product space over the real numbers. If W is a subspace of V, prove that we can write V as a direct sum $V = W \oplus W^\perp$, where $W^\perp = \{v \in V \mid (v, w) = 0 \text{ for all } w \in W\}$.

5. Let V and W be finite dimensional vector spaces over a field k and let $T: V \to W$ be a linear transformation.

 (a) Define the transpose map $T^*: W^* \to V^*$ where $W^* = \text{Hom}_k(W, k)$ is the dual of W.

 (b) Show that T^* is injective if and only if T is surjective.

6. Let V and W be finite dimensional vector spaces over a field k and let $T: V \to W$ be a linear transformation. Let $S = \{v_1, v_2, \ldots, v_m\}$ be a subset of V. For each of the following statements either prove it or give a counter example to it.

 (a) If S is linearly independent set in V, then $\{T(v_1), T(v_2), \ldots, T(v_m)\}$ must be a linearly independent set in W.

 (b) If $\{T(v_1), T(v_2), \ldots, T(v_m)\}$ is a linearly independent set in W, then S must be a linearly independent set in V.