Final Examination MAT 284 Barth and Lewis
Monday, May 9, 2005. 10:15 am – 12:15 pm

Version A

Print name:

Sign name:

Student Identification Number:

Instructor (Barth or Lewis):

TO RECEIVE CREDIT, work and reasoning should be shown for every problem except those indicated by (no work needed).

There are 32 questions (each worth 4 points) on 10 pages.

CHECK THAT YOU HAVE THE COMPLETE TEST!

Do not write below this line

Questions 1 to 9

Question 10

Questions 11 to 21

Question 22

Questions 23 to 32

Total

Examination # 1
(Questions 1 to 9 and 10 and 22)

Examination # 2
(Questions 11 to 21 and 22)

Examination # 3
(Questions 23 to 32 and 10)
1. A company sells a product at $11 per unit. Its fixed cost is $15,000 and its variable cost per unit is $7.

a) Find a function giving the company's profit $P = P(q)$ if it produces and sells q units.

\[P(q) = \]

b) At what level of production will there be a loss of $3,000?

(Show your work)

2. If \(f(s) = \frac{1}{s^3 - 2} \) and \(g(s) = \sqrt{s + 1} \), then \((f \circ g)(s) = \)

(You need not simplify your answers.)

3. The domain of \(g(z) = \frac{1}{\sqrt{4 - 2z}} \) is

(Show your reasoning)
4. If $10^{\log(x - 3)} = 7$, then $x =$

(Show your work)

5. The supply and demand equations (in some order), with prices in dollars, are: $p = -2q + 48, p = 6q + 8$. If a tax of 40¢ per unit is imposed on the supplier,
 a) write the supply equation
 b) write the demand equation

(No work needed)

6. The cost to produce 20 units is $110 and the cost to produce 10 units is $70. The cost $c = c(q)$ in dollars is a linear function of output q, i.e., c and q are linearly related. Find $c = c(q)$.

(Show your work)

7. Express $2\log_x x - 3\log_x(x+1)$ as a single logarithm:

(Show your work)
8. A company has 1,000 units in stock, now selling at $3 per unit. Next month the price will increase by $1. The company wants total revenues from the sale of the units to be no less than $3,600. Let x be the maximum number of units that can be sold this month. Then x must satisfy the following equation or inequality (you need not simplify or solve).

9. If the demand function is $p = 200 - 2q$ and the total cost $c = 300 + 60q$, where q is the number of units, then the profit function is. (Show your reasoning)

10. A company holds a workshop for at least 30 people. If 30 people attend, the charge is $200 each, and the company will reduce the charge for everyone by $4 for each person above 30 who attends. Let x be the number of people who attend. Write the company's total revenue in dollars as a function of x. (Here $30 \leq x < 80$. Do not simplify your answer or maximize R. (Show your work)

$$R =$$

[If you wish to let x be the number of decreases, you may do so, but check here _______ and write R below].

$$R =$$
11. \[\frac{d}{dx} (5x^3 + 6) = \]
(No work needed)

12. Differentiate \(y = x^2 e^{(2x + 1)} \) and do not simplify your answer. (Show your work)

13. Differentiate \(y = \frac{4t + 2}{t^3} \) and do not simplify your answer. (Show your work)

14. Differentiate \(y = \frac{5}{\sqrt{2x^3 + 1}} \) and do not simplify your answer. (Show your work)
15. Find \(\lim_{x \to 4} \frac{x^2 - 2x - 8}{x^2 - 5x + 4} \)

(Show your reasoning)

16. Find the slope of the curve \(y = -8x + x^4 \) at \(x = 1 \)

(Show your work)

17. Let \(q \) be the number of units, let \(p \) be the price per unit in dollars, and let the demand function be \(p = 100 - 2q \). Find the marginal revenue function.

(Show your work)

18. Let \(y = w^3 \) and let \(w = 5 - x^2 \). Use the chain rule to find \(\frac{dy}{dx} \) at \(x = 1 \) (first state the chain rule):

(Show your work)
19. Evaluate \(\lim_{{x \to \infty}} \frac{4 + x - x^2}{2x^3 - x + 1} \).

(No work needed)

20. Differentiate \(y = \ln\left(x^5 \sqrt{1 + x^2} \right) \).

(You do not need to simplify your answer but show your work)

21. Use the DEFINITION of derivative to find the derivative of \(f(x) = x^2 - 1 \).

First state the definition.

(Show your work)

\[
\frac{d}{dx} \left[e^{\ln(4x^2 + 6)} \right] =
\]

(Show your work.)
23. Let \(y = x^3 + 9x^2 + 24x - 7 \). Find all values of \(x \) for which the curve is concave up.
(Show your work and, if there are none, state “none”)

24. Let \(f(x) = -x^3 + 3x^2 + 24x - 8 \). Find the critical points of \(f(x) \).
(Show your work and, if there are none, state “none”)

25. The curve \(y = -x^3 + 3x^2 + 9x + 8 \) has a critical point at \(x = -1 \). Determine if this point is a relative maximum, relative minimum, or neither.
(Show your work)
26. Let \(y = -x^3 + 15x^2 - 48x + 2 \). Determine whether or not the point \(x = 5 \) is an inflection point. Justify your answer.

\[
\int_{-2}^{2} \frac{2}{x^2} \, dx =
\]
(Show your work)

27. The demand function is \(p = -4q + 400 \), where \(q \) is the number of units and \(p \) is the price per unit in dollars. Find the output at which total revenue is the maximum. (Prove your conclusion)

28. If \(p = 800 - 2q^2 \), where \(q \) is the number of units and \(p \) is the price per unit, then find the (point) elasticity of demand at \(q = 10 \). (Show your work)
30. Suppose that the marginal revenue function is \(500 - 12q^2 \), where \(q \) is the number of units. Find the demand function. (Show your work)

31. Presently, at $50 per sweater, a company is selling 400 sweaters, while at $40 per sweater it estimates that it will sell 500 sweaters. Find the (approximate) elasticity of demand. (Show your work)

32. Let the total cost function be \(c = q^2 + 3q + 400 \), where \(q \) is the number of units. At what level of output \(q \) will the average cost per unit be at the minimum. [You must show that you are at the minimum.]

There are 32 questions. Be sure that you have done each one of them.