(1) Find the break even quantity q for product Y if consumers will pay $p = (100 - q)$ and when the average cost is $c = \frac{20q + 1600}{q}$.

(2) For $f(x) = (x + 3)^3$ and $g(x) = 1 - x^2$ find $g \circ f(x)$.

(3) Consumers will buy 30 units of a product if the price is 10, and they will buy 40 units if the price is 6. Assuming that the demand is linear find the demand equation.
(4) Write the expression \[\ln \left(\frac{x^5}{(x+1)^2(x+2)^3} \right) \] in terms of \(\ln(x) \), \(\ln(x + 1) \), \(\ln(x + 2) \).

(5) Find the limits, justify your answers. \[
\lim_{x \to 1^-} \frac{x^2 + 3}{x + 1} \quad \quad \lim_{x \to \infty} \frac{2x^3 + 10}{-x^4 + 5x^3 - 11}
\]

(6) Use the definition to find the derivative of \(f(x) = 6 - 2x + x^2 \).
(7) Find the derivatives do not simplify.
(a) \(\frac{d}{dx} \left(10x^9 + \frac{5}{\sqrt{x}} + \ln(x) + e^{x^2} \right) \)

(b) \(\frac{d}{dq} \frac{2 - q^3}{q + 3} \)

(c) \(\frac{d}{dt} (t + 3)(t^2 + 1)^9 \)

(8) For its best product a company knows that \(m \) workers will produce the quantity \(q = 2m^2 + m \) per day. The demand function for the product is \(p = \frac{7}{q^2 + q} \). Find the marginal revenue product when \(m = 10 \).

(9) Elasticity of demand. The demand equation for a product is \(p = \sqrt{5000 - q^2} \). Find the elasticity of demand \(\eta \). Describe the elasticity of demand when \(q = 50 \).
(10) Find the intervals of increase, decrease, concave up, concave down, local extrema, and inflection points for $y = 3x^4 - 4x^3$.

(11) The marginal cost for a product is $0.4q + 28$ and the marginal revenue is $600 - 4q$. Find the profit maximizing output.

(12) Find the antiderivatives do not simplify.

 (a) $\int x^3 - 8x^2 + \frac{7}{\sqrt{x}} \, dx$

 (b) $\int e^x + \frac{2}{x} \, dx$

 (c) $\int (x^2 + 3)^4 x \, dx$